Characterization of recombinant human growth differentiation factor-9 signaling in ovarian granulosa cells.

نویسندگان

  • David G Mottershead
  • Minna M Pulkki
  • Pranuthi Muggalla
  • Arja Pasternack
  • Minna Tolonen
  • Samu Myllymaa
  • Olexandr Korchynskyi
  • Yoshihiro Nishi
  • Toshihiko Yanase
  • Stan Lun
  • Jennifer L Juengel
  • Mika Laitinen
  • Olli Ritvos
چکیده

Growth differentiation factor-9 (GDF9) is an oocyte secreted paracrine factor essential for mammalian ovarian folliculogenesis. Like other members of the transforming growth factor-beta (TGFbeta) superfamily, GDF9 is synthesized as a prepropeptide which needs processing by furin-like proteases to result in an active mature protein. We have previously characterized a preparation of unpurified recombinant mouse GDF9 which is bioactive as produced by human embryonic kidney 293T (HEK-293T) cells. However, we find that unpurified recombinant human GDF9 (hGDF9) produced by HEK-293T cells is not bioactive. Purified recombinant hGDF9 is bioactive and here we report the characterization of this protein. We find that the purified untagged mature region of hGDF9 is active in transcriptional reporter assays specific for Smad3/4 in human granulosa-luteal (hGL) cells. We also demonstrate the use of a BMP (Smad1/5) responsive (BRE-luciferase) adenovirus in primary cultures of hGL cells to detect BMP responses. Using this adenovirus we find that purified human GDF9 does not activate the Smad1/5 pathway. Purified hGDF9 mature region activated the Smad3 pathway also in the FSH responsive human granulosa tumor cell line KGN. Primary cultures of rat granulosa cells responded to purified hGDF9 with an increase in DNA synthesis as measured by [3H]-thymidine uptake. Here we also report that the inclusion of a C-terminal affinity purification tag destroys GDF9 bioactivity. This study is the first characterization of purified biologically active human GDF9 and as such is of importance for studies on human fertility, and efforts aimed at treating infertility conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-173: Evaluation of The Follicular Growth after Mouse Ovarian Organ Culture in The Medium Supplemented with Growth Differentiation Factor-9B (GDF-9B)

Background: Growth differentiation factor -9B (GDF-9B) is an oocyte derived growth factor, this protein is essential for development of ovarian follicles and act mainly by binding to its receptor on the surface of granulosa cells. The effect of this factor on the growth of follicles in various developmental stages particularly primordial and primary follicles is unknown. The aim of this study w...

متن کامل

P-58: Secreted Frizzeled Related Protein Type-4as an Inducer of Apoptosis and Terminal Differentiationof Rat Granulosa Cells

Background: Involvement of Wnt proteins and one of its antagonist known as secreted Frizzled Related Protein type-4 (sFPRP-4) was reported in rodent ovarian follicular development. Other studies showed an ap- Abstracts of the 11th Royan International Congress on Reproductive Biomedicine 7 7 International Journal of Fertility & Sterility (IJFS), Vol 4, Suppl 1, Summer 2010 optotic-associated exp...

متن کامل

Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells.

Ovarian folliculogenesis is driven by the combined action of endocrine cues and paracrine factors. The oocyte secretes powerful mitogens, such as growth differentiation factor 9 (GDF9), that regulate granulosa cell proliferation, metabolism, steroidogenesis and differentiation. This study investigated the role of the epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase ...

متن کامل

DIFFERENTIATION OF HUMAN OVARIAN FOLLICULAR GRANULOSA CELLS INTO KERATINOCYTES

Background & Aims: Stem cells are undifferentiated cells and are found in different tissues. These cells have capacity of self-renewal and differentiation into other lineages. Granulosa cells (GCs) are the multipotent stem cells. In the present research we evaluated the differentiation potential of GCs into keratinocytes. Material & Methods: GCs were cultured after enzymatic isolation from ova...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular endocrinology

دوره 283 1-2  شماره 

صفحات  -

تاریخ انتشار 2008